Habitat influence on bat capture in the sclerophyllous forest of central Chile

Authors

  • Martín A. H. Escobar Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Santiago, Chile. Escuela de Medicina Veterinaria, Facultad de Ciencias Médicas, Universidad Bernardo O'Higgins, Santiago, Chile. https://orcid.org/0000-0001-6009-7025
  • Nélida R. Villaseñor Grupo de Ecología, Naturaleza y Sociedad, Departamento de Gestión Forestal y su Medio Ambiente, Facultad de Ciencias Forestales y de la Conservación de la Naturaleza, Universidad de Chile, Santiago, Chile. https://orcid.org/0000-0001-8624-4484

DOI:

https://doi.org/10.31687/SaremNMS25.1153

Keywords:

capture success, chiropterans, harp trap, Mediterranean climate, mist-netting

Abstract

The use of trails to capture bats is common in forests, but the effect of habitat variables on capture success has received little attention. We evaluated the effect of site attributes (canopy cover and distance to water bodies) on bat captures on trails within sclerophyllous forest remnants in central Chile. Forty-two individuals of two species were captured: Myotis arescens Osgood, 1943 and Lasiurus varius Poeppig, 1835. Canopy cover above trails was the best predictive variable for bat captures, evidencing a positive effect.

References

Abarca, J. A. 2016. Comparación de tres métodos de muestreo de murciélagos (Orden: Chiroptera) en la zona mediterránea de Chile central. Tesis Ingeniero en Recursos Naturales Renovables. Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile.

Adams, R. A., & M. A. Hayes. 2018. Assemblage-level analysis of sex-ratios in Coloradan bats in relation to climate variables: a model for future expectations. Global Ecology and Conservation 14:e00379. https://doi.org/10.1016/j.gecco.2018.e00379.

Barton, K. 2023. Package “MuMIn”: multi-model inference. R-package version 1.40.4. <https://cran.r-project.org/web/packages/MuMIn/>.

Bolker, B. M., et al. 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology and Evolution 24(3):127–135. https://doi.org/10.1016/j.tree.2008.10.008.

Caras, T., & C. Korine. 2009. Effect of vegetation density on the use of trails by bats in a secondary tropical rain forest. Journal of Tropical Ecology 25:97–101. https://doi.org/10.1017/S0266467408005671.

Díaz, M. M., L. F. Aguirre, & R. M. Barquez. 2011. Clave de identificación de los murciélagos del cono sur de Sudamérica. Centro de Estudios en Biología Teórica Aplicada. Cochabamba, Bolivia.

Díaz, I. A., et al. 2002. Vertebrados terrestres de la Reserva Nacional Río Clarillo, Chile central: representatividad y conservación. Revista Chilena de Historia Natural 75:433–448.

Ellerbrok, J. S., N. Farwig, F. Peter, & C. C. Voigt. 2024. Forest bat activity declines with increasing wind speed in proximity of operating wind turbines. Global Ecology and Conservation 49: e02782. https://doi.org/10.1016/j.gecco.2023.e02782.

ESRI. 2011. ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute.

Fiala, A. C. S., S. L. Garman, & A. N. Gray. 2006. Comparison of five canopy cover estimation techniques in the western Oregon Cascades. Forest Ecology and Management 232:188–197. https://doi.org/10.1016/j.foreco.2006.05.069.

Gajardo, R. 1994. La vegetación natural de Chile: clasificación y distribución geográfica. Editorial Universitaria, Santiago, Chile.

Galarza, M. I., & L. F. Aguirre, eds. 2006. Métodos estandarizados para el estudio de murciélagos en Bosques Montanos. BIOTA. Cochabamba, Bolivia.

Geluso, K. N., & K. Geluso. 2012. Effects of environmental factors on capture rates of insectivorous bats, 1971–2005. Journal of Mammalogy 96(1):161–169. https://doi.org/10.1644/11-MAMM-A-107.1.

Hughes, M., et al. 2021. The skynet, a new method to capture bats over water. Bat Research & Conservation 14(1):215–221.

Kerth, G. 2022. Long-term field studies in bat research: importance for basic and applied research questions in animal behavior. Behavioral Ecology and Sociobiology 76:75. https://doi.org/10.1007/s00265-022-03180-y.

Kuenzi, A. J., & M. L. Morrison. 2003. Temporal patterns of bat activity in southern Arizona. The Journal of Wildlife Management 67:52–64.

Kunz, T. H., & L. F. Lumdsen. 2003. Ecology of cavity and foliage roosting bats. Bat Ecology (T. H. Kunz & M. B. Fenton, eds.). University of Chicago, Chicago.

Kunz, T. H., & E. L. P. Anthony. 1982. Age estimation and post-natal growth in the bat Myotis lucifugus. Journal of Mammalogy 63(1):23–32.

Lettink, M., & D. P. Armstrong. 2003. An introduction to using mark-recapture analysis for monitoring threatened species. Department of Conservation 2003: Using mark-recapture analysis for monitoring threatened species: introduction and case study. Department of Conservation Technical Series 28.

Lewis, S. E. 1995. Roost fidelity of bats: a review. Journal of Mammalogy 76:481–496.

Locatelli, A. G., S. Ciuti, P. Presetnik, R. Toffoli, & E. Teeling. 2019. Long-term monitoring of the effects of weather and marking techniques on body condition in the Kuhl's pipistrelle bat, Pipistrellus kuhlii. Acta Chiropterologica 21(1):87–102. https://doi.org/10.3161/15081109ACC2019.21.1.007.

Mills, D. J., T. W. Norton, H. E. Parnaby, R. B. Cunningham, & H. A. Nix. 1996. Designing surveys for microchiropteran bats in complex forest landscapes—a pilot study from south-east Australia. Forest Ecology and Management 85:149–161.

Novaes, R. L. M., A. Rodríguez-San Pedro, M. M. Saldarriaga-Cordoba, O. Aguilera-Acuña, D. E. Wilson, & R. Moratelli. 2022. Systematic review of Myotis (Chiroptera, Vespertilionidae) from Chile based on molecular, morphological, and bioacoustic data. Zootaxa 5188(5):430–452. https://doi.org/10.11646/zootaxa.5188.5.2.

Ossa, G. 2010. Métodos bioacústicos: una aproximación a la ecología de comunidades de murciélagos en las eco-regiones mediterránea y el bosque templado de Chile. Tesis Ingeniero Agrónomo, Especialidad Ciencias Animales. Facultad de Ciencias Agronómicas, Pontificia Universidad Católica de Chile, Santiago, Chile.

Ossa, G., & A. Rodríguez-San Pedro. 2015. Myotis chiloensis (Chiroptera: Vespertilionidae). Mammalian Species 47(922):51–56. https://doi.org/10.1093/mspecies/sev005.

Pech-Canche, J. M., C. MacSwiney, & E. Estrella. 2010. Importancia de los detectores ultrasónicos para mejorar los inventarios de murciélagos neotropicales. Therya 1:227–234.

R Core Team. 2022. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>.

Rodríguez-San Pedro, A,. & J. A. Simonetti. 2013. Foraging activity by bats in a fragmented landscape dominated by exotic pine plantations in central Chile. Acta Chiropterologica 15(2):393–398. https://doi.org/10.3161/150811013X679017.

Rodríguez-San Pedro, A. & J. A. Simonetti. 2014. Variation in search-phase calls of Lasiurus varius (Chiroptera: Vespertilionidae) in response to different foraging habitats. Journal of Mammalogy 95(5):1004–1010. https://doi.org/10.1644/13-MAMM-A-327.

Shapiro, J. T., A. Monadjem, T. Röder, & R. A. McCleery. 2020. Response of bat activity to land cover and land use in savannas is scale-, season-, and guild-specific. Biological Conservation 241:108245. https://doi.org/10.1016/j.biocon.2019.108245.

Vásquez, D. A., A. A. Grez, & A. Rodríguez-San Pedro. 2020. Species-specific effects of moonlight on insectivorous bat activity in central Chile. Journal of Mammalogy 101(5):1356–1363. https://doi.org/10.1093/jmammal/gyaa095.

Voigt, C. C., K. Schneeberger, S. L. Voigt Heucke, & D. Lewanzik. 2011. Rain increases the energy cost of bat flight. Biology Letters 7:793–795. https://doi.org/10.1098/rsbl.2011.0313.

Webala, P. W., M. D. Craig, B. S. Law, K. N. Armstrong, A. F. Wayne, & J. S. Bradley. 2011. Bat habitat use in logged jarrah eucalypt forests of south-western Australia. Journal of Applied Ecology 48:398–406. https://doi.org/10.1111/j.1365-2664.2010.01934.x.

Weinzettel, J., D. Vačkář, & H. Medková. 2018. Human footprint in biodiversity hotspots. Frontiers in Ecology and the Environment 16(8):447–452. https://doi.org/10.1002/fee.1825.

Chart showing the number of bat captures as a function of canopy cover above a trail in central Chile (Escobar & Villaseñor, 2025)

Published

05/08/2025

How to Cite

Escobar, M. A. H., & Villaseñor, N. R. (2025). Habitat influence on bat capture in the sclerophyllous forest of central Chile. Notas Sobre Mamíferos Sudamericanos, 7(1). https://doi.org/10.31687/SaremNMS25.1153